

Absolute Maximum Ratings(Note 1)					
Symbol	Parameter	Value	Conditions		Units
V_{CC}	Supply Voltage	-0.5 to +4.6			V
V_{1}	DC Input Voltage	-0.5 to +7.0			V
V_{O}	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE		V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 2)		V
I_{IK}	DC Input Diode Current	-50	$V_{1}<$ GND		mA
I_{OK}	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$		mA
Io	DC Output Current	64	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}$ Output at HIGH State		mA
		128	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ Output at LOW State		
I_{CC}	DC Supply Current per Supply Pin	± 64			mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 128			mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150			${ }^{\circ} \mathrm{C}$
Recommended Operating Conditions					
Symbol	Parameter		Min	Max	Units
V_{CC}	Supply Voltage		2.7	3.6	V
V_{1}	Input Voltage		0	5.5	V
I_{OH}	HIGH Level Output Current			-32	mA
I_{OL}	LOW Level Output Current			64	mA
$\mathrm{T}_{\text {A }}$	Free-Air Operating Temperature		-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		0	10	ns / V
Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Note 2: I_{O} Absolute Maximum Rating must be observed.					

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$				Units
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$		
		Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Outputs	$\begin{aligned} & \hline 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 4.6 \end{aligned}$	$\begin{aligned} & \hline 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 5.2 \end{aligned}$	ns
$\begin{aligned} & \overline{t_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{LE}}$ to A or B	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 6.4 \\ & 6.6 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to A or B	$\begin{aligned} & \hline 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \hline 5.5 \\ & 6.1 \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \hline 6.3 \\ & 7.2 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to A or B	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.3 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 5.9 \\ & 5.9 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{CE}}$ to A or B	$\begin{aligned} & \hline 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 6.2 \end{aligned}$	$\begin{aligned} & \hline 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 6.8 \\ & 7.4 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{CE}}$ to A or B	$\begin{aligned} & \hline 2.1 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline 5.8 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 2.1 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline 6.1 \\ & 5.9 \end{aligned}$	ns
t_{W}	Pulse Duration $\overline{\text { LE LOW }}$	3.3		3.3		ns
t_{5}	Setup Time A or B before $\overline{\mathrm{LE}}$, Data HIGH A or B before $\overline{L E}$, Data LOW A or B before $\overline{C E}$, Data HIGH A or B before $\overline{C E}$, Data LOW	$\begin{aligned} & 0.4 \\ & 1.0 \\ & 0.2 \\ & 0.7 \end{aligned}$		$\begin{aligned} & 0.4 \\ & 1.5 \\ & 0.2 \\ & 1.2 \end{aligned}$		ns
t_{H}	Hold Time A or B before $\overline{\text { LE, Data HIGH }}$ A or B before $\overline{L E}$, Data LOW A or B before $\overline{C E}$, Data HIGH A or B before $\overline{C E}$, Data LOW	$\begin{aligned} & 1.5 \\ & 1.3 \\ & 1.6 \\ & 1.4 \end{aligned}$		$\begin{aligned} & 0.6 \\ & 1.5 \\ & 0.5 \\ & 1.6 \end{aligned}$		ns
$\mathrm{t}_{\mathrm{OSHL}}$ tosLh	Output to Output Skew (Note 8)		$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns

Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshL) or LOW-to-HIGH (tosLh)

Capacitance (Note 9)

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4	pF
$\mathrm{C}_{/ / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	8	pF

Note 9: Capacitance is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883B, Method 3012.

